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Abstract 
Scientific and Engineering domain Applications like high 
energy physics applications have huge computational and 
storage needs. Such applications rely mainly on 
geographically dispersed productions farms for their 
computing needs. Production farms typically consist of 
commercial off-the-shelf (COTS) clusters, Network of 
Workstations (NOW) and intranets. In a grid 
environment, these clusters are interfaced to the grid 
middleware via cluster management software like a batch 
system. In this paper we focus on a detrimental effect that 
one or more faulty nodes in a cluster have on the 
efficiency and throughput of the cluster and the 
application in general. This effect is what we call as the 
‘Black hole effect’. A ‘Black Hole’ is a faulty node in the 
cluster that causes the application to fail on it due to 
incompatibilities between application requirements and 
the execution environment.  
 
1. Introduction 
 
  A computational grid has been defined as a hardware 
and software infrastructure that provides dependable, 
consistent, pervasive and inexpensive access to high end 
computational capabilities [7]. Large scale distributed 
systems like grids have great potential for incurring 
faults; this has been one of the main hindering factors in 
the deployment of applications on computational grids 
[12]. The issues of fault tolerance and reliability in 
distributed systems have been a significant area of 
research for many years, because of the high failure rates 
intrinsic to such systems and a variety of solutions have 
been proposed to detect and respond to faults and failures 
in a distributed system in general. The grid fabric consists 
of a multitude of hardware and software components that 
are prone to failures. The Grid Fabric layer provides the 
resources to which shared access is mediated by Grid 
protocols: for example, computational resources, storage 
systems, catalogs, network resources, and sensors [8]. 

Clusters are part of the grid fabric for grids hosting high 
energy physics applications. Compute nodes of the 
clusters as well as the interconnecting network are prone 
to failures. Such component failures can lead to 
unanticipated, potentially disruptive failure behavior and 
to service unavailability. Monitoring systems like 
Supermon [11] and GEMS [12] assist the system 
administrators in determining failures within a cluster, but 
the existing grid job management systems cannot recover 
or mask such failures. Application level failures are 
presently detected at the best by manual intervention or 
by the grid job management layer by checking the exit 
status of the execution returned by the batch system or by 
modifying the application to deal with failures, which can 
be a non-trivial task for legacy applications like high 
energy physics.  
 Our focus in this paper is determining and reacting to 
failure caused by the mismatch between the application 
requirements and the execution host. In particular we deal 
with failures that occur when the execution host fails to 
provide a required service or a set of services to the 
application, resulting in the application crashing. 
Solutions such as checkpointing, replication and message 
logging are complimentary to the solution proposed in 
this paper.  
 Four broad types of failure classes are defined by [3]. 
Omission failures occur when a process does not respond 
to an event. Timing failures occur when a process does 
not respond before a timeout has expired, or responds 
prematurely. Crash failures are unrecoverable states when 
a process completely stops executing. Byzantine [6], or 
arbitrary failures, is the class of failures that are unable to 
be accounted for in the design of a system. Fault detection 
is a prerequisite for recovering from faults. Applications 
executing in a distributed environment rely on various 
tools and services provided by the execution 
environment. Resource allocation and management 
systems like Condor [10], manage resource allocation by 



Reduction in efficiency due to the black hole effect 
for a 35 node Condor cluster. 
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Figure 1. Reduction in grid job efficiency due to faulty nodes 

 
specialized description languages that perform the dual 
task of describing the available resources at the provider 
sites and the resources requested by the application. 
Applications typically rely on a set of basic services 
offered by the execution environment like compression 
utilities and system libraries, and usually do not explicitly 
specify these in the job description to the resource 
management system. Compute nodes in Beowulf clusters 
or COTS clusters are heterogeneous in terms of the 
underlying architecture or the software environment and 
utilities. Nodes in a cluster typically do not have the exact 
same set of libraries or utilities. Version conflicts may 
result in the application failing on a particular compute 
node, which can potentially have a cascading effect. The 
entire batch jobs of the same application queued in gets 
scheduled to the compute node failing the application, 
resulting in low throughput and efficiency. This 
phenomenon is what we describe in this paper is called 
the ‘Black Hole Effect’. The term application is used to 
denote a collection of batch jobs that are queued in the 
batch system. All the queued jobs are similar in terms of 
their computational complexities, running time and the 
execution code. Computational grids provide access to 
high end computational resources like Beowulf clusters 

and High Performance Computing Clusters (HPCC), 
typically to a geographically distributed, diverse user 
base. HPCC provide a single system image. The 
application can be executed on any of the servers within 
the cluster. HPCC typically do not exhibit the black hole 
effect because of the single system image, they have all or 
none semantics, i.e. the application can execute with 
success on all the nodes (servers) or it cannot execute at 
all. Beowulf clusters are scalable performance clusters 
based on commodity hardware, on a private system 
network, with open source software infrastructure. 
Cluster architectures in which the compute elements are 
heterogeneous in terms of hardware and software are 
prone to the black hole effect. In a grid environment, the 
computational and storage resources are typically in 
different administrative domains and geographically 
dispersed. An application wanting to make use of the grid 
resources has to yield to the local policies of the resource 
provider and the heterogeneity of resources. The grid 
software must shield the application from the detrimental 
effects of the underlying fabric. In the rest of the paper 
we describe the problem of detecting Black holes in more 
detail and propose three different classes of approaches of 
mitigating its effect on the efficiency of the applications. 



We frequently cite the problem and its resolution in the 
context of the SAM-Grid [1] [9] infrastructure, a 
distributed system for job, data and information handling 
for high energy physics applications. Section 2 elaborates 
on the concept of Black holes and their how the efficiency 
of an application exacerbates in a grid environment by 
taking Monte Carlo simulations on the grid for high 
energy physics (HEP) as an example application. Section 
3 describes observed scenarios of how black holes come 
into existence and their detection. Section 4 outlines 
different approaches to deal with the effect. We conclude 
with section 5 and provide future direction for research in 
section 6. 
 
2. What are black holes? 
 
  Monte Carlo methods are widely used in scientific 
computing and simulations. Applications using Monte 
Carlo methods, like High Energy Physics (HEP) 
applications account for a major percentage of the 
applications running on widely deployed grid 
infrastructures like SAM-Grid. Monte Carlo applications 
are usually compute intensive operating on data sets of 
varying magnitude in terms of size. Parallelism is a way 
to accelerate the convergence of a Monte Carlo 
computation. If N processors execute N independent 
copies of a Monte Carlo computation, the accumulated 
result will have variance N times smaller than a single 
copy.  Grid jobs in production grids like SAM-Grid 
manifest themselves into multiple local jobs at an 
execution site. A grid job is a description of the user 
requirements for the application (Monte Carlo 
simulation). For example for a typical DØ [2] Monte 
Carlo simulation grid job, the user specifies the number 
of physics events to be simulated and the control 
parameters for the simulation. A single grid job is 
mapped to multiple local jobs after the resource allocation 
is done by the job management system. Local jobs 
operate on a smaller chunk of the grid job. When the grid 
job is instantiated at the execution site it usually 
outnumbers the compute elements (nodes), resulting in 
local jobs getting queued in the batch system. Most of the 
execution sites have a mix of dedicated and non-
dedicated computational resources, managed by a 
network batch queuing system like Condor and PBS. The 
batch system schedules these local jobs on compute 
resources as they become available. The application relies 
on some basic services provided by the compute nodes, if 
any of these required services malfunction; the 
application fails and exists the compute node with an 
error status. The batch system is unaware of the cause of 
the failure and schedules another job of the same 
application to the same compute node which is bound to 
fail. The batch system continues to schedule jobs on the 
same compute node causing spurious high turnaround, 
and eventually yielding very low throughput for the grid 

job. This effect is called the Black Hole effect, and the 
compute nodes which malfunction with respect to the 
application are called Black holes. 
 
3. Black hole detection. 
 
 Figure 1 represents the decrease in efficiency of a grid 
job. The tests were carried on a cluster having 35 
compute nodes, running Red Hat Linux 7.2 and managed 
by Condor batch system. A total of 210 jobs were 
submitted for each configuration of black holes. The 
batch system had no other jobs except the jobs submitted 
for the test.  In the rest of this section we provide a more 
insight into the detection of Black holes.  
 
When jobs exhibit high turnaround on a particular node, 
how should the grid software determine if the jobs are 
really failing on that node, or the node is just a 
combination of powerful processing element, large 
memory?  
 
Black hole detection is aided by the application 
specifying a minimum duration for the job to execute 
(dmin). From empirical data dmin can be estimated within an 
error margin. dmin is expressed in terms of wall clock time 
for a given architecture and a given operating system. For 
example to simulate 250 physics events of a DØ Monte 
Carlo simulation job, it takes at a minimum 8 hours (dmin) 
between the time it is scheduled by the batch system and 
the time that the error and output logs are returned. The 
reference architecture is an Intel x 86 with 512 mega 
bytes of physical memory, 1024 mega bytes of virtual 
memory, 1GHz of clock speed, running a Linux 2.4.x 
kernel.  
 In determining if a node is really a black hole, we 
normalize the values of the compute nodes processing 
power (processor) and its memory with respect to the 
reference system, thus arriving at a normalized value of 
dmin. Empirical evidence suggests that if the amount of 
time taken by an execute node to complete a job is less 
than 60% to 80% of the dmin value, (leeway of 20% to 
compensate for mathematical approximations), then we 
have a potential black hole.   
 
How does the grid software react, if we have mixture of 
local jobs having a relatively high variation in their 
execution time?  
 
The Black Hole effect is an application specific effect. A 
node which is designated as a black hole for one 
application might be a perfectly fine node for some other 
application if that application does not rely on the same 
services for its execution. For example if a Bio 
informatics application does not use a particular system 
library or is able to handle inconsistencies in the version 
of  a system library, then that application can execute fine 
on a black hole for a high energy physics application.  



 
Which layer of software detects the presence of Black 
holes?  
 
The job management software on the execution site like 
the Globus jobmanager can detect these faulty nodes, 
since a jobmanager is started for each grid submission. 
We propose the detection of Black holes as a part of the 
grid-fabric interface [4].  In SAM-Grid, the grid-fabric 
interface is a collection of services on the execution site 
gateway. The gateway interfaces the grid middleware to 
the batch system, by dynamically instantiating the job 
management service. The job management at the 
execution site is assisted by these services. These services 
try to mask the failures and the shortcomings of the 
fabric.  
 
What fabric services are necessary in order to detect 
black hole? 
 
Some basic services are expected of the fabric to detect 
the existence of a black hole. These services are 
incorporated in many popular batch queuing systems. 
Service like retrieval of the standard output and standard 
error streams of the finished jobs. API’s for explicitly 
specifying the compute node on which a job should 
execute.  
 We now provide with some observed scenarios. These 
scenarios are based on practical experiences and by no 
means are complete or exhaustive, but stem from our 
experience of executing physics applications on 
production grids 
• Grid software which depends on authentication 
mechanisms via X509 certificates exhibit failures due to 
clock skews, especially if the clock is slow. The X509 
proxy credentials will not be valid if the system clock is 
slow, thus resulting is failure of accessing grid services 
relying on X509 authentication mechanism from the 
compute node in the cluster. If the application scheduled 
on a compute node with a slow clock utilizes the X509 
proxies for accessing grid services, then the application 
will fail on that particular compute node. 
• Inappropriate software. If a job expects some basic 
tools, usually provided by the operating system such as 
compression utilities et cetera, and these basic services 
are not present or behave inconsistently, it results in  the 
application failing. For example applications which 
depend on GNU-zip are susceptible to the black hole 
effect if the compression utility malfunctions or has the 
incorrect version.  
• hostname utility, or in general gethostbyname() does 
not return the fully qualified domain name, this might 
result in the failure of network services which might work 
locally, but fail in a grid environment. 
• Conflict with system libraries. Applications relying on 
system libraries for their execution could fail if these 

libraries are not compatible with the application. This is 
especially observed with the glibc library in flavors of 
Linux for dynamically linked code. 
 
 
4. Reacting to the black hole effect 
 
We have described some potential scenarios of how black 
holes might come into existence. We now present a 
couple of approaches to recover and whenever possible 
avoid the black hole effect. 
 
4.1. Proactive probing for black holes 
 
 The proactive approach of determining whether a 
compute node can be a potential black hole relies on the 
application describing in a formal way as to what services 
it expects from a compute node in the batch system. This 
approach is a pessimistic approach in the sense that it 
assumes that there will be potential black holes in a 
cluster and tries to avoid them by isolating these nodes 
for the application. These services can be specified via a 
service description language. The grid software then has 
the responsibility of sending small probes (test jobs) to all 
the nodes in the batch system and analyzes the results of 
these probes. Persistent information regarding the total 
number of reachable nodes, nodes suitable for executing 
the application based on the criteria (good nodes) and 
nodes unsuitable for executing the application (potential 
black holes) is maintained.  
Pros: 
• A correct formal description of services required from 
the compute node is the only    requirement of this 
approach. 
• Can easily be accommodated into an existing Grid 
infrastructure, with out changing a significant amount of 
application code. 
Cons: 
• Is highly dependent on the correct formal specification 
of the services required from the compute nodes. 
• The persistent information regarding the state of the 
cluster is not very dynamic and might result in wasted 
resources. 
• Relies on the fact that there is some non trivial way to 
get a list of all available compute nodes.  
• Populating the persistent storage might be a very time 
consuming task and the information collected might be 
outdated and resource wastage might occur. For example 
in a Condor pool of computing resources, the state of the 
Condor pool is constantly changing. New nodes become 
available and existing jobs might be checkpointed and/or 
preempted during their run, thus making the whole 
environment highly dynamic. 
 
4.2. Reactive approach - Mining the logs 
 



 The reactive approach for dealing with the black hole 
effect is an optimistic approach. We start by assuming 
that all the compute nodes in the cluster comply with the 
applications service requirements. This approach is at the 
best probabilistic and depends greatly on the availability 
of statistical data regarding the behavior of the 
application. For example the grid software needs to know 
what is an approximate time that the application takes for 
an Intel x 86 machines with 512 mega bytes of physical 
memory, 1024 mega bytes of virtual memory and the 
processor clock speed of 1 GHz. The values can then be 
normalized depending on the similar parameters of a 
compute node. When a grid job is instantiated (manifests 
itself into multiple local batch jobs), we let the grid 
software submit multiple jobs to compute nodes in the 
batch system from a list of available nodes. Each node in 
the list is initially assigned a weight of 0 units. A sorted 
list of nodes is maintained with the nodes having higher 
weights at the head of the list. If a job successfully 
executes on a node its weight increases exponentially. If a 
job fails to execute on the node, then its weight reduces 
exponentially. This ensures that the most of the jobs are 
scheduled on good nodes at the same time avoiding the 
starvation of nodes. The jobs are scheduled by the batch 
system in from the head of the list, thus increasing its 
chances of success. 
Pros: 
• Very dynamic in nature. Gives high priority to the 
latest results. 
• Needs no formal specification of what services the 
compute node should provide. 
Cons: 
• Determining the cause of is difficult, and mining of log 
files is necessary. 
• Depends on the fact that batch system provides a 
service of submitting jobs to selective nodes. Also if a list 
of nodes is given, the scheduling of jobs on these nodes 
might be biased. 
• Need complex statuses or messages to determine if the 
failure was due to the application failing (property of the 
application) or one of the services required by the 
application failing (property of the node). 
• Complex data structure required to maintain 
information, overhead might not be trivial. 
• Collection of statistical information might be an 
overhead. 
• Normalization needs to be done depending on the 
characteristics of the compute node and the characteristics 
specified by the application, which might not be trivial. 
• Since this approach allows failures and learns from 
them, the efficiency of the grid infrastructure is hampered 
to a non negligible extent. 
 If a node executes a job successfully, then its weight 
increases rapidly during the initial few successes and 
comparatively slowly for the later successes, thus 
following a logarithmic trend. 

 If a node having positive weight fails to execute a job, 
we reduce its weight linearly until it reaches the initial 
weight of 0 units. After this point the weight reduced 
exponential. Thus if a node is a potential black hole, the 
first job scheduled to it will fail and it will immediately 
receive negative weight. On the other hand if a node with 
positive weight fails a job, we classify this kind failure as 
Byzantine failure [3] . The higher the weight associated 
with a node, the higher is the probability that jobs will 
execute successfully on that node if scheduled at some 
later point in time. 
 
4.3. Hybrid approach - Probing with Mining 
 
 The Hybrid approach tries to incorporate the 
advantages of both the previous approaches. A periodic 
probing of the nodes combined as in the proactive 
approach combined with the dynamicity of the reactive 
approach would be ideal. A list of good nodes can be 
built by probing and this information is periodically 
refreshed depending on the outcome of the local jobs as 
in the reactive approach. The hybrid approach offers the 
best of both worlds, but the complexity of implementation 
might be the only hindering factor in its deployment. 
 
4.4. Black holes and system throughput 
 
 Throughput is output relative to input; the amount 
passing through a system from input to output. 
Tfail = Time taken by an application to fail on a compute 
node. 
Tsuccess = Time taken by an application to complete 
successfully. 
Failure rate = Number of failed jobs per unit time.  
Throughput = (Successful jobs / Total number of jobs). 
 A batch system with 35 execute node is submitted 210 
jobs. Tsuccess is 100s and Tfail is 2s. If we have 2 black holes, 
1 job fails per second (Failure rate = 1 jobs per second). 
Success rate is 33 jobs per 100s, i.e. 0.33 jobs per second. 
At the end of 100s the throughput of the system is 24.81. 
The existence of black holes increases the input to the 
system with out producing any useful output, thus 
adversely affecting the systems throughput. The greater 
the time to fail for a job on a node, the greater is the 
throughput of the system.  
 Throughput is inversely proportional to the number of 
black holes and Tfail.  
     
 
5. Related work 
 
 Fault detection and response has been a highly 
researched topic for the past decade or so. [12] Propose a 
fault detection service for wide area distributed 
computing environments, like computational grids. This 
service uses well-known techniques based on unreliable 



fault detectors to detect and report component failure, 
also known as fail-stop failures, while allowing the user 
to trade of timeliness of reporting against false positive 
rates. Many batch queuing systems like Condor support 
checkpointing and migration, message logging to deal 
with application failures. These mechanisms would 
improve the efficiency when recovering from failures due 
to Black Holes.  
 
6. Conclusions and Future Work 
 
 We have described the problem of applications failures 
due to incompatible execution environments. We also 
demonstrate how these failures exacerbate in 
computational grids as compared to isolated clusters. 
Different approaches have been proposed to detect and 
mitigate such failures. In the SAM-Grid system we have 
been successful in dealing with the Black hole effect by 
providing fault tolerance in the grid-fabric interface [5]. 
Majority of the reasons why applications fail on the 
worker nodes is because of the heterogeneity of the 
cluster and lack of formal specification as to what 
services the application expects from compute resources.  
Such formal specification is not always possible due to 
the fabric limitations and hence the need for shielding 
grid applications from faults. 
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